Telegram Group & Telegram Channel
Forwarded from Machinelearning
✔️ Книга+практика : Understanding Deep Learning

Книга “Understanding Deep Learning” посвящена идеям и принципам, лежащим в основе глубокого обучения. Подача материала построена таким образом, чтобы читатель мог понять материал настолько эффективно, насколько это возможно. Для читателей, желающих углубиться в изучение, в каждой главе приведены соответствующие задачи, записные книжки по Python и подробные справочные материалы.

В первой части книги представлены модели глубокого обучения и обсуждается, как их обучать, измерять их производительность и улучшать эту производительность.

В следующей части рассматриваются архитектуры, которые специализируются на изображениях, тексте и графических данных. Для свободного понимания этих двух глав требуется понимать принципы линейной алгебры, матанализа и теории вероятностей.

Последующие части книги посвящены генеративным моделям и методике обучения с подкреплением. Эти главы требуют больших знаний в области теории вероятностей и математического анализа.

В последней главе обсуждается этика искусственного интеллекта и призыв к практикующим инженерам задуматься о моральных последствиях своей работы.

Автор книги: Simon J. D. Prince - почетный профессор информатики в Университете Bath (Великобритания) , со-автор более 80 опубликованных исследований в области ML.
Научный сотрудник, специализирующийся на искусственном интеллекте и глубоком обучении, он руководил группами ресерча в Anthropics Technologies Ltd, Borealis AI и других компаниях.

Дополнительно, на отдельном сайте книги, читателям доступны:

🟢ответы на наиболее частые вопросы студентов;
🟢ipynb - ноутбуки для практических занятий по материалам книги;
🟢интерактивные иллюстрации по темам;
🟢презентации по каждой главе для преподавателей, которые захотят построить свое обучение на содержимом книги;
🟢большой список статей по 12 направлениям для продолжения обучения после прочтения книги: AI Theory, Transformers & LLMs, Unsupervised learning, Natural language processing, Computer vision и др.

▶️Дата последней актуализации книги : 28 августа 2024 года.


📌Стоимость: бесплатно


🟡Сайт книги
🖥Github


@ai_machinelearning_big_data

#AI #ML #Book
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/golang_books/768
Create:
Last Update:

✔️ Книга+практика : Understanding Deep Learning

Книга “Understanding Deep Learning” посвящена идеям и принципам, лежащим в основе глубокого обучения. Подача материала построена таким образом, чтобы читатель мог понять материал настолько эффективно, насколько это возможно. Для читателей, желающих углубиться в изучение, в каждой главе приведены соответствующие задачи, записные книжки по Python и подробные справочные материалы.

В первой части книги представлены модели глубокого обучения и обсуждается, как их обучать, измерять их производительность и улучшать эту производительность.

В следующей части рассматриваются архитектуры, которые специализируются на изображениях, тексте и графических данных. Для свободного понимания этих двух глав требуется понимать принципы линейной алгебры, матанализа и теории вероятностей.

Последующие части книги посвящены генеративным моделям и методике обучения с подкреплением. Эти главы требуют больших знаний в области теории вероятностей и математического анализа.

В последней главе обсуждается этика искусственного интеллекта и призыв к практикующим инженерам задуматься о моральных последствиях своей работы.

Автор книги: Simon J. D. Prince - почетный профессор информатики в Университете Bath (Великобритания) , со-автор более 80 опубликованных исследований в области ML.
Научный сотрудник, специализирующийся на искусственном интеллекте и глубоком обучении, он руководил группами ресерча в Anthropics Technologies Ltd, Borealis AI и других компаниях.

Дополнительно, на отдельном сайте книги, читателям доступны:

🟢ответы на наиболее частые вопросы студентов;
🟢ipynb - ноутбуки для практических занятий по материалам книги;
🟢интерактивные иллюстрации по темам;
🟢презентации по каждой главе для преподавателей, которые захотят построить свое обучение на содержимом книги;
🟢большой список статей по 12 направлениям для продолжения обучения после прочтения книги: AI Theory, Transformers & LLMs, Unsupervised learning, Natural language processing, Computer vision и др.

▶️Дата последней актуализации книги : 28 августа 2024 года.


📌Стоимость: бесплатно


🟡Сайт книги
🖥Github


@ai_machinelearning_big_data

#AI #ML #Book

BY Golang Books






Share with your friend now:
tg-me.com/golang_books/768

View MORE
Open in Telegram


Golang Books Telegram | DID YOU KNOW?

Date: |

Unlimited members in Telegram group now

Telegram has made it easier for its users to communicate, as it has introduced a feature that allows more than 200,000 users in a group chat. However, if the users in a group chat move past 200,000, it changes into "Broadcast Group", but the feature comes with a restriction. Groups with close to 200k members can be converted to a Broadcast Group that allows unlimited members. Only admins can post in Broadcast Groups, but everyone can read along and participate in group Voice Chats," Telegram added.

Golang Books from sg


Telegram Golang Books
FROM USA